Endmember Extraction for Hyperspectral Images Using Watershed and Normalized Cuts

نویسندگان

  • Han Xu
  • Bangsen Tian
  • Fang Liu
چکیده

Endmember extraction integrated with spatial information has been concerned on some research recently. In this paper we studies an improved endmember extraction method with spatial preprocessing module which use watershed with normalized cuts to avoid oversegmentation and produce accurate results from spectral mixture analysis. The spatial-spectral endmember extraction method which used the advantages of image segmentation generates the preliminary results and provides important knowledge for future research. * Corresponding author. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W19, 2011 ISPRS Hannover 2011 Workshop, 14-17 June 2011, Hannover, Germany

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery

Although many endmember extraction algorithms have been proposed for hyperspectral images in recent years, there are still some problems in endmember extraction which would lead to inaccurate endmember extraction. One important problem is the variation in endmember spectral signatures due to spatial and temporal variability in the condition of scene components and differential illumination cond...

متن کامل

Minimum distance constrained nonnegative matrix factorization for the endmember extraction of hyperspectral images

Endmember extraction and spectral unmixing is a very challenging task in multispectral/hyperspectral image processing due to the incompleteness of information. In this paper, a new method for endmember extraction and spectral unmixing of hyperspectral images is proposed, which is called as minimum distance constrained nonnegative matrix factorization (MDC-NMF). After being compared with a newly...

متن کامل

An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images

Mixed pixels are common in hyperspectral remote sensing images. Endmember extraction is a key step in spectral unmixing. The linear spectral mixture model (LSMM) constitutes a geometric approach that is commonly used for this purpose. This paper introduces the use of artificial bee colony (ABC) algorithms for spectral unmixing. First, the objective function of the external minimum volume model ...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Unsupervised classification strategy utilizing an endmember extraction technique for airborne hyperspectral remotely sensed imagery

Remote sensing has become an important source of urban land-use/cover classification, and as a result of their high spatial and spectral resolution, airborne hyperspectral images have been widely used to distinguish different urban classes. However, the previous studies into the classification of urban environments have mainly focused on a supervised scenario, which is limited by the selection ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011